
DMOG docs
Release 1.0

Jose M Menendez

May 16, 2024

GENERAL REMARKS

1 Contents 3
1.1 Introduction . 3
1.2 General Use Policy . 3
1.3 Access and Priorization . 4
1.4 Job Quotas . 4
1.5 Storage Quotas . 4
1.6 Hardware . 5
1.7 Connecting to DMOG . 7
1.8 Data Management . 9
1.9 File Transfer . 10
1.10 A word on OpenFlightHPC . 10
1.11 Job Management . 12
1.12 Job Submission . 14
1.13 Interactive Jobs . 19
1.14 Making dynamic jobs scripts . 20
1.15 Software Management . 20
1.16 ABAQUS . 21
1.17 AMBER . 22
1.18 Julia . 23
1.19 MATLAB . 24
1.20 OpenFoam . 25
1.21 OpenMolcas . 26
1.22 ORCA . 28
1.23 Python . 29
1.24 R . 31
1.25 VSCode . 32

i

ii

DMOG docs, Release 1.0

Welcome to the documentation page for DMOG, the new high-performance computing (HPC) facility at Heriot-Watt
University. DMOG is a state-of-the-art cluster that aligns with the University Strategy 2025, which aims to support and
enable world-leading research.

The cluster is named after Dame Maria Ogilvie Gordona pioneering geologist who began her scientific career at Heriot-
Watt College in 1888. She was the first woman to receive a Doctor of Science from UCL and a PhD from Munich
University. Maria combined academic research with married life and work for the Liberal Party and women’s action
groups. She won the Geological Society Lyell medal for research on plate tectonics and became a Dame of the British
Empire for her work for women’s rights.

This documentation page serves as a comprehensive guide to using the DMOG cluster, including information on ac-
cessing the system, submitting jobs, and utilizing the various software packages and tools available. We hope you find
this resource helpful in your research endeavors.

Note: This project is under active development. If you wish to provide feedback, please contact the support team at
ishelp@hw.ac.uk.

GENERAL REMARKS 1

mailto:ishelp@hw.ac.uk

DMOG docs, Release 1.0

2 GENERAL REMARKS

CHAPTER

ONE

CONTENTS

1.1 Introduction

Welcome to the DMOG High-Performance Computing (HPC) facility!

This guide is designed to help users access and utilize the system effectively. Whether you’re a researcher, student,
or staff member, the DMOG HPC facility can provide significant computing resources to support your work. This
guide covers essential topics for using the facility, including system access, data storage, job submission, program
compilation, and environment management. By following these guidelines, you can make the most of the DMOG HPC
facility and achieve optimal performance for your computing needs.

1.1.1 Acknowledging DMOG

We would appreciate it if you could acknowledge the use of the HWU high-performance computing facility (DMOG)
and associated support services in the completion of this work by including the following statement in your publications:

“The authors acknowledge the use of the HWU high-performance computing facility (DMOG) and associated support
services in the completion of this work.”

1.2 General Use Policy

The DOMG HPC cluster is a shared resource that has been set up to support research. It is a powerful and valuable
resource that can be used to undertake computationally intensive tasks that would otherwise not be possible. It is
important to remember that this resource is shared by all users and must, therefore, be used responsibly. Each user
has a responsibility to ensure that their use of the resource does not negatively impact other users, and that they do not
misuse the resource in any way.

The facility is to be used only for research purposes. This means that it should not be used for any other purposes, such
as commercial or personal activities. Any misuse of the facility will not be tolerated, and users who violate the usage
policy will be subject to disciplinary action, which may include suspension or termination of their access to the facility.

As a user of DMOG, you will be associated with a group that will have a designated line manager. The line manager
is responsible for managing the group’s accounts and ensuring that the group’s usage of the HPC facility follows our
guidelines. This includes deciding on the data stored in the user accounts, as well as managing access to the accounts.
If a user leaves the group, their account will remain under the management of the line manager, who will ultimately
decide what to do with the account. This ensures that access to our HPC facility is managed appropriately and that
users are held accountable for their usage.

It is essential that all users of the facility adhere to the guidelines outlined in the documentation. The facility staff
is available to provide support and assistance to users, and they can be contacted if any issues or concerns arise. By

3

DMOG docs, Release 1.0

working together and using the facility responsibly, we can ensure that the facility remains a valuable resource for the
research community.

1.3 Access and Priorization

Access to the HPC cluster is granted to research staff and research students by default, and is free at the point of use.
To gain access, users are required to fill out a TopDesk form providing basic information about their research and the
expected resource requirements. The HPC team will review each application and grant access in a timely manner.

For those with specific and/or time-sensitive research requirements, a paid priority access service is available. This
provides access to higher priority in the job queues. Please contact us for more information on this service.

1.4 Job Quotas

To ensure fair share of resources among the HPC user community, we have implemented job quotas. These quotas are
subject to review and may be adjusted as required. The current job quotas are as follows:

1. maximum of 10 jobs running per user

2. maximum of 60 jobs submitted per user (allowing up to 50 jobs to be held in a queued/pending state)

3. Maximum of 128 cores

4. Maximum of 1006G RAM

5. Maximum of 2 GPUs per user (minimum of 1 GPU per job)

6. Maximum runtime 7 days

These quotas are designed to ensure that all users have a fair opportunity to access the cluster resources. Users who
require additional resources are encouraged to contact the HPC team to discuss their requirements.

1.5 Storage Quotas

Similar to the job quotas previously detailed, there are two separate quotas relating to data storage on DMOG:

1. A quota of 150GB of data capacity

2. A quota of 250k total files

If you exceed either of these quotas you will no longer be able to create new files on DMOG until you remove files and
no longer exceed either quota.

You can check your current quota usage with the following command:

quota -s

This will display an output similar to the following:

[gp27@login1 [dmog] ~]$ quota -s
Disk quotas for user gp27 (uid 433400227):

Filesystem space quota limit grace files quota limit grace
storage:/export/users

22111M 150G 200G 10299 250k 300k

4 Chapter 1. Contents

https://hwu.topdesk.net/tas/public/ssp/content/detail/service?unid=8ef782731230451b8360322938f2e6e4

DMOG docs, Release 1.0

Should you exceed either of these quotas an asterisk (*) will apear next to the value in the Files column.

These quotas are designed to ensure that all users have a fair opportunity to access the cluster resources. Users who
require additional resources are encouraged to contact the HPC team to discuss their requirements.

1.5.1 Conda

Using Conda frequently causes the total number of files quota to be exceeded.

Our recommended workaround for this is to move your .local folder (where Conda stores your enviroments) to the
archive folder and create a symbolic link to the new location.

You can do this by using the following commands:

mv $HOME/.local $HOME/archive/

ln -s $HOME/archive/.local $HOME/.local

You can confirm that this has worked by using the ls -la command. You should see an output similar to ths:

[gp27@login1 [dmog] ~]$ ls -la
total 212
drwx------ 32 gp27 clusterusers 4096 May 1 08:46 .
drwxr-xr-x 214 root root 4096 Apr 30 12:54 ..
drwx------ 2 gp27 clusterusers 4096 Feb 13 12:25 .apptainer
lrwxrwxrwx 1 gp27 clusterusers 22 Dec 5 09:59 archive -> /mnt/data/shared/gp27/
-rw------- 1 gp27 clusterusers 22927 May 1 08:52 .bash_history
-rw------- 1 gp27 clusterusers 18 Dec 5 09:59 .bash_logout
-rw------- 1 gp27 clusterusers 193 Dec 5 09:59 .bash_profile
-rw------- 1 gp27 clusterusers 231 Dec 5 09:59 .bashrc
drwxr-xr-x 16 gp27 clusterusers 4096 Apr 25 10:21 .cache
drwxr-xr-x 2 gp27 clusterusers 4096 Apr 3 08:48 .conda
drwxr-xr-x 11 gp27 clusterusers 4096 Mar 7 16:17 .config
drwx------ 3 gp27 clusterusers 4096 Jan 9 13:18 .dbus
drwxr-xr-x 2 gp27 clusterusers 4096 Jan 9 13:19 Desktop
drwxr-xr-x 3 gp27 clusterusers 4096 Feb 9 10:42 Documents
drwxr-xr-x 2 gp27 clusterusers 4096 Jan 9 13:19 Downloads
-rw------- 1 gp27 clusterusers 334 Dec 5 09:59 .emacs
lrwxrwxrwx 1 gp27 clusterusers 15 Apr 16 15:23 .local -> archive/.local/
...

This line lrwxrwxrwx 1 gp27 clusterusers 15 Apr 16 15:23 .local -> archive/.local/ shows that
my .local folder is actually located in archive/.local

1.6 Hardware

The DMOG HPC cluster consists of 25 compute nodes connected by a high-speed Ethernet network. Of these, 10
nodes are equipped with GPU cards, while the remaining nodes are CPU-only. A Lustre parallel filesystem serves
shared scratch space across the cluster, maximizing the performance of the underlying hardware. Home directories are
shared via NFS.

1.6. Hardware 5

DMOG docs, Release 1.0

1.6.1 CPU compute nodes

There are two types of standard compute nodes available on the DMOG HPC cluster:

Large Memory Nodes

Each large memory node contains two 2.5 GHz, 32-core AMD EPYC 7513 processors and 512GB of RAM. Hyper-
threading is disabled by default, but the processors support it if needed. A local SSD disk of 1TB is available on
the nodes. There are a total of ten compute nodes of this type. These nodes are well-suited for memory-intensive
workloads.

Large Core Count Nodes

There are five large core count nodes available on the DMOG HPC cluster. Each node is equipped with two 2.3GHz,
48-core AMD EPYC 7643 processors and 256GB of RAM. Hyperthreading is disabled on these nodes. A local SSD
disk is available for high throughput. These nodes are well-suited for CPU-intensive workloads.

1.6.2 GPU compute nodes

The DMOG HPC cluster includes 10 compute nodes equipped with GPU cards. Each node is equipped with 2 Nvidia
A40 (48GB) cards, 2 32-core AMD EPYC 7543 32-Core Processor, and 256GB of RAM. These nodes are well-suited
for workloads that require significant parallel computing resources, such as deep learning, or artificial intelligence.

1.6.3 Storage

The DMOG HPC cluster provides a Lustre parallel file system that serves the shared scratch directory. This file system
has a total capacity of 93TB and is the primary storage location for processing data. In addition to the Lustre file
system, there are also several other volumes available on the cluster that are presented as NFS exports. These volumes
are intended for specific use cases, such as software installations or backups, and are not part of the Lustre file system:

• /mnt/data/: 30TB

• /users/: 12TB of shared space for home directories

• /mnt/scratch/: 93TB of high read/write bandwidth for parallel calculations

• /tmp/: 1TB SSD locally attached to the node

1.6.4 Networking

The nodes on the cluster are connected through high-speed Ethernet switches, enabling fast and efficient communication
between nodes.

6 Chapter 1. Contents

DMOG docs, Release 1.0

1.7 Connecting to DMOG

Before following the process below, this guide assumes you have an account on the cluster. If that is not the case, you
can request one by contacting ISHelp@hw.ac.uk

Interaction with DMOG is done remotely via SSH (Shecure Shell). To connect to another machine using SSH you
need to have a SSH client program installed on your machine. macOS, Linux, and newer versions of Windows come
with a command-line (text-only) SSH client pre-installed. On older Windows versions there are various graphical SSH
clients you can use like PuTTY or MobaXterm.

Using your favorite ssh-client, just type:

ssh <username>@dmog.hw.ac.uk

Note: the cluster is accessible within the University network. For remote access you need to log on to the University
VPN first.

1.7.1 VSCode via Slurm

To create a job on DMOG and have VSCode connect to the job to debug code etc:

You will need to have an SSH keypair set up for connecting to DMOG.

Open VSCode, install the ‘Remote - SSH’ extension.

Modify/create your SSH config file (Windows: C:\users\[username]\.ssh\config Mac/Linux: ~/.ssh/config) to include
the following:

Note that you may need to create the ‘.ssh’ folder and the ‘config’ config file if they are not already there.

Host dmog
User [YOUR USERNAME]
IdentityFile [PATH TO YOUR DMOG SSH PRIV KEY]
ControlMaster auto
HostName dmog.hw.ac.uk

Host hpc-job
User [YOUR USERNAME]
IdentityFile [PATH TO YOUR DMOG SSH PRIV KEY]
ProxyCommand ssh dmog 'nc $(squeue --me --name=vsCode --states=R -h -O NodeList) 2222'
StrictHostKeyChecking no

SSH in to DMOG via command line (or other SSH client you normally use)

Create a file called vsCode.sh, Set its contents to:

srun --job-name "vsCode" --cpus-per-task 2 --mem-per-cpu 500 --time 1:00:00 sshd -D -p␣
→˓2222 -f /dev/null -h ~/.ssh/id_alcescluster

Allow it to be executed:

chmod +x vsCode.sh

Run the vsCode.sh script. Then go to VS Code and connect to the hpc-job host under remote connections on the left.

1.7. Connecting to DMOG 7

mailto:ISHelp@hw.ac.uk
https://www.hw.ac.uk/uk/services/is/it-essentials/virtual-private-network-vpn.htm
https://www.hw.ac.uk/uk/services/is/it-essentials/virtual-private-network-vpn.htm

DMOG docs, Release 1.0

1.7.2 Configure MobaXTerm for DMOG

Create a Work folder on the left by right-clicking User Sessions and selecting new folder:

Right-click the work folder and select New session:

In the new session window select SSH. In the Remote Host field enter dmog.hw.ac.uk

Check the box next to Specify Username and enter your DMOG username into the field

Bookmark Settings and enter DMOG into the Session Name field then click OK:

8 Chapter 1. Contents

DMOG docs, Release 1.0

Double-click the DMOG session on the left of the window, you will be prompted for your DMOG password to log in.
Note that whenever you are prompted for a password you will not be able to see what you are typing, not even *s.

Once logged in, at the bottom left of the window check the box next to Follow Terminal Folder:

The area to the left of the Window will allow you to see the files in the folder you are currently inside, as well as create
new folders, and upload files/folders to the folder you are currently in.

To upload files from your Windows PC to DMOG, you can either drag and drop files onto this panel on the left to, or
use the Up arrow to select files to upload. You can also download files from DMOG to your computer by selecting
them on the left panel and clicking the Down arrow.

1.8 Data Management

There are several data storage types available to users. Each of which has different characteristics and policies, and
it is suitable for different types of use. Please note that the cluster is intended to store data for as long as it is being
processed and so none of the storage options are backed up.

The following table shows the different storage options that are currently available to users:

1.8. Data Management 9

DMOG docs, Release 1.0

Storage Use Exported to nodes Total Capacity Notes
/users/ Home dir Yes 12TB Quota: 150GB, No backup
/mnt/data/ Local data Yes 30TB No backup
/mnt/
scratch/

Compute Yes 93TB No backup

/tmp/users/ Compute No up to 1TB No backup

1.9 File Transfer

The easiest way to transfer data from/to the cluster is to use one of the standard programs based on the SSH protocol
such us scp or rsync.

1.9.1 The scp command

The scp command creates a copy of a file, or a directory (if the -r flag is called) on a remote machine.

To copy data to the cluster:

scp [options] /source/path/to/object <user>@dmog.hw.ac.uk:/path/to/destination

To copy data from the cluster:

scp [options] <user>@dmog.hw.ac.uk:/source/path/to/object /path/to/destination

For a complete list of options available: man scp

1.9.2 The rsync command

rsync uses the same underlying protocol as scp, but it employs a special delta transfer algorithm. It compares if there
is any differences in the files and only transfer those differences. Also, while copying if the connection drops, it can
pick up the transfer where it was left off.

The syntax to copy files to/from the cluster:

rsync [options] /source/path/to/object <user>@dmog.hw.ac.uk:/path/to/destination
rsync [options] <user>@dmog.hw.ac.uk:/source/path/to/object /path/to/destination

For a list of options: man rsync

1.10 A word on OpenFlightHPC

We have installed OpenFlightHPC on our cluster to provide a robust and scalable HPC management solution for our
users. With OpenFlightHPC, users have access to a suite of tools that can help them manage their jobs and resources
more effectively, improving the overall efficiency and productivity of the cluster. Additionally, the modular nature of
OpenFlightHPC allows us to easily add new functionality and adapt the system to meet evolving needs.

10 Chapter 1. Contents

DMOG docs, Release 1.0

1.10.1 HPC User environments (flight env)

User environments (i.e flight environments) are software environments that have been pre-configured to support specific
applications or workflows on an HPC cluster. They typically include a specific combination of software libraries,
compilers, and tools that are required to run the application or workflow effectively.

On DMOG, there are several flight environments available to users, including Gridware, Conda, and Singularity.
Gridware is a package manager that provides access to a range of pre-built software packages that have been compiled
for use on the cluster, including the Modules package that allows you to load and manage software modules on the
cluster. Conda is an open-source package management system and environment management system that makes it easy
to install and manage multiple software packages on the cluster. Singularity is a containerization tool that allows
you to create and run containers that encapsulate specific software environments and dependencies.

By providing these flight environments on the cluster, we aim to make it easier for users to access the software and tools
they need to complete their work. Each flight environment has its own unique features and benefits. You can easily
explore and manage the flight environments available on the cluster by using these commands:

• flight env avail: This command will display a list of all the available flight environments on the cluster. It
will show you the name of each environment, as well as a brief description of its purpose and contents.

• flight env activate <env_name>: This command is used to activate a specific flight environment on the
cluster. Replace <env_name> with the name of the environment you want to activate. Once activated, any
commands you run will be executed within the selected environment.

• flight env info: This command will display detailed information about the currently active flight environ-
ment, including the environment’s name, description, and location on the cluster.

• flight env deactivate: This command is used to deactivate the currently active flight environment. Once
deactivated, any commands you run will be executed outside of the selected environment.

1.10.2 Remote desktop (flight desktop)

When working on interactive applications on an HPC cluster, it can often be difficult to test and fine-tune your work-
flows, especially when you’re working remotely. That’s where Flight desktop comes in. By providing a desktop envi-
ronment that you can access remotely, Flight desktop gives you the flexibility to work on your applications from your
desktop or laptop computer as if they were running locally.

Now, let’s look at the pre-requisites for Windows, Mac, and Linux:

• Windows:

• VNC viewer: You will need to install a VNC viewer, such as TightVNC or RealVNC, to connect to your Flight
Desktop session.

• SSH client: You will need to install an SSH client, such as PuTTY, to connect to your HPC cluster account and
launch Flight Desktop.

• Mac:

– VNC viewer: You can use the built-in Screen Sharing app on Mac to connect to your Flight Desktop
session, or you can install a third-party VNC viewer such as RealVNC.

– SSH client: The built-in Terminal app on Mac can be used as an SSH client to connect to your HPC
cluster account and launch Flight Desktop.

• Linux:

– VNC viewer: You can install a VNC viewer, such as Remmina or TigerVNC, to connect to your Flight
Desktop session.

1.10. A word on OpenFlightHPC 11

DMOG docs, Release 1.0

– SSH client: Most Linux distributions come with an SSH client pre-installed, so you should be able
to use your system’s built-in SSH client to connect to your HPC cluster account and launch Flight
Desktop.

To launch a flight desktop environment, follow these steps:

1. Log in to your HPC cluster account.

2. Open a terminal window and type flight desktop start <desktop-name> to launch Flight Desktop.
If you’re unsure what name to use, you can find the list of available desktop sessions by typing flight desktop
avail.

3. Wait for the desktop environment to start up. Be patient, this may take a few minutes.

4. Once the desktop environment has started, you can connect to it using a VNC viewer. The specific details
for connecting to Flight Desktop will be shown on the screen once the desktop session is created and can be
retrieved by using this command: flight desktop show <sessionid>, where sessionid is the ID for the
specific session.

5. Note that the desktop sessions are created on the login node, and they must be terminated manually by the user
when they are no longer needed. To do so, you can use the flight desktop kill <sessionid> command.

For further information on using Flight Desktop, you can consult the online manual available through flight help
desktop.

1.10.3 Disabling OpenFlightHPC

OpenFlightHPC is a powerful tool for HPC users, but there may be situations where users want to disable it. Some
reasons for disabling OpenFlightHPC could include avoiding potential conflicts with other software installed on the
cluster, or simply not needing any of the features provided by OpenFlightHPC.

To disable OpenFlightHPC, users can issue the flight stop command, which will stop any currently running Flight
services. Additionally, users can use the flight set always off command to disable Flight services from starting
up automatically in the future. It’s important to note that these commands only affect the user who issues them and not
the entire cluster.

1.11 Job Management

DMOG uses the Slurm job scheduler to manage resources and ensure fair access for all users. To submit jobs to the
scheduler, users write a submission script specifying the required resources (such as the number of CPUs, amount of
memory, etc.) and input/output files. After submitting a job, Slurm will try to allocate the requested resources and
start the job. If the requested resources are not immediately available, the job will be queued until enough resources
become available.

In addition to batch mode jobs, Slurm also supports interactive jobs which can be useful for testing code or trou-
bleshooting problems. To start an interactive session, users can request an allocation of resources and then start a shell
session on a compute node.

Slurm is not only used to submit and monitor jobs, but also to describe the resources required for the jobs. To ensure
that your job runs efficiently, it is important to specify the correct resources in your submission script.

12 Chapter 1. Contents

DMOG docs, Release 1.0

1.11.1 Basic Slurm commands

• sinfo: This command is used to display information about the nodes available on the cluster, such as their
state (idle, down, etc.), partition, number of CPUs, and amount of available memory. It can help users choose
appropriate resources for their jobs.

• squeue: This command is used to display the current queue of jobs on the cluster, including their status, user, and
estimated start time. It can help users track the progress of their jobs and estimate when they will start running.

• sbatch: This command is used to submit a batch job to the Slurm scheduler. Users specify the required resources
and the commands to run in a script, and then submit the script using the sbatch command. The job is then
scheduled by the Slurm scheduler and run on the requested resources.

• scancel: This command is used to cancel a running or pending job on the cluster. Users can specify the job ID
or job name to be cancelled.

• scontrol: This command is used to view and modify Slurm configuration and status information. It can be
used to monitor the status of Slurm components.

• squeue: use this command to get a high-level overview of all active (running and pending) jobs in the cluster.

Further information about these commands is available in the online manual: man <command>

1.11.2 Job queue states and reasons

The squeue command allows users to view information about the state of a job. The default output format of the
command is as follows:

JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
JOBID Row 1,

column
3

pp 00 jlkj jhkh hjhkj

Where

JOBID Job or step ID. For array jobs, the job ID format will be of the form <job_id>_<index>
PARTITION Partition of the job/step
NAME Name of the job/step
USER Owner of the job/step
ST State of the job/step. See below for a description of the most common states
TIME Time used by the job/step. Format is days-hours:minutes:seconds (days,hours only

printed as needed)
NODES Number of nodes allocated to the job or the minimum number of nodes required by a

pending job
NODELIST(REASON) For pending jobs: Reason why pending. For failed jobs: Reason why failed. For all

other job states: List of allocated nodes. See below for a list of the most common
reason codes.

During its lifetime, a job passes through several states. The most common states are PENDING, RUNNING, SUS-
PENDED, COMPLETING, and COMPLETED. Some other states are shown in the table below:

1.11. Job Management 13

DMOG docs, Release 1.0

PD Pending. Job is waiting for resource allocation
R Running. Job has an allocation and is running
S Suspended. Execution has been suspended and resources have been released for other jobs
CA Cancelled. Job was explicitly cancelled by the user or the system administrator
CG Completing. Job is in the process of completing. Some processes on some nodes may still be

active
CD Completed. Job has terminated all processes on all nodes with an exit code of zero
F Failed. Job has terminated with non-zero exit code or other failure condition

If the job has failed or it is pending, a reason for its current state is given in the last column of the squeue output. Some
of the most common reasons are:

(Resources) The job is waiting for resources to become available so that the jobs resource request can be
fulfilled

(Priority) The job is not allowed to run because at least one higher prioritized job is waiting for re-
sources

(Dependency) The job is waiting for another job to finish first (–dependency=. . . option)
(TimeLimit) The job exhausted its time limit.
(ReqNodeNotAvail) Some node required by the job is currently not available. The node may currently be in use,

reserved for another job, in an advanced reservation, DOWN, DRAINED, or not responding
JobLaunchFailure The job could not be launched. This may be due to a file system problem, invalid program

name, etc.

For a complete list of job states codes and reasons, see Job State Codes and Job Reasons

1.12 Job Submission

1.12.1 Batch Jobs

To submit a batch job to the cluster, you need a submission script that contains two parts. The first part, located at the
top of the script, describes the resources that the job requires using #SBATCH directives. These directives are treated as
Slurm options and specify the necessary resources for the job. The second part of the submission script contains the
job-specific shell commands.

Slurm options can also be added to the sbatch command directly as command line arguments, which will override the
ones embedded in the job script.

Batch jobs are submitted to the cluster via sbatch.

For example: sbatch ./myJob.sh

Here are some examples of job submission scripts:

14 Chapter 1. Contents

https://slurm.schedmd.com/squeue.html#lbAG
https://slurm.schedmd.com/squeue.html#lbAF

DMOG docs, Release 1.0

Serial job

#!/bin/bash -l

################# Part-1 Slurm directives ####################
Working dir
#SBATCH -D /users/username
Environment variables
#SBATCH --export=ALL
Output and Error Files
#SBATCH -o job-%j.output
#SBATCH -e job-%j.error
Job name
#SBATCH -J serial-test
Run time: "hours:minutes:seconds", "days-hours"
#SBATCH --time=00:05:00
Memory limit (in megabytes)
#SBATCH --mem=1024
Specify partition
#SBATCH -p nodes

################# Part-2 Shell script ####################
#===============================
Activate Flight Environment
#-------------------------------
source "${flight_ROOT:-/opt/flight}"/etc/setup.sh

#===========================
Create results directory
#---------------------------
RESULTS_DIR="$(pwd)/${SLURM_JOB_NAME}-outputs/${SLURM_JOB_ID}"
echo "Your results will be stored in: $RESULTS_DIR"
mkdir -p "$RESULTS_DIR"

#===============================
Application launch commands
#-------------------------------
Customize this section to suit your needs.

echo "Executing job commands, current working directory is $(pwd)"

REPLACE THE FOLLOWING WITH YOUR APPLICATION COMMANDS

echo "Hello, dmog" > $RESULTS_DIR/test.output
echo "This is an example job. It ran on `hostname -s` (as `whoami`)." >> $RESULTS_DIR/
→˓test.output
echo "Output file has been generated, please check $RESULTS_DIR/test.output"

1.12. Job Submission 15

DMOG docs, Release 1.0

Shared memory job

#!/bin/bash -l

################# Part-1 Slurm directives ####################
Working dir
#SBATCH -D /users/username
Environment variables
#SBATCH --export=ALL
Output and Error Files
#SBATCH -o job-%j.output
#SBATCH -e job-%j.error
Job name
#SBATCH -J shared-mem-test
Run time: "hours:minutes:seconds", "days-hours"
#SBATCH --time=00:05:00
Memory limit (in megabytes). Total --mem or amount per cpu --mem-per-cpu
#SBATCH --mem-per-cpu=1024
Processing slots
#SBATCH --nodes=1
#SBATCH --ntasks=32
Specify partition
#SBATCH -p nodes

################# Part-2 Shell script ####################
#===============================
Activate Flight Environment
#-------------------------------
source "${flight_ROOT:-/opt/flight}"/etc/setup.sh

#===========================
Create results directory
#---------------------------
RESULTS_DIR="$(pwd)/${SLURM_JOB_NAME}-outputs/${SLURM_JOB_ID}"
echo "Your results will be stored in: $RESULTS_DIR"
mkdir -p "$RESULTS_DIR"

#===============================
Application launch commands
#-------------------------------
Customize this section to suit your needs.

echo "Executing job commands, current working directory is $(pwd)"

REPLACE THE FOLLOWING WITH YOUR APPLICATION COMMANDS

echo "Hello, dmog" > $RESULTS_DIR/test.output
echo "This is an example job. It ran on `hostname -s` (as `whoami`)." >> $RESULTS_DIR/
→˓test.output
echo "Output file has been generated, please check $RESULTS_DIR/test.output"

16 Chapter 1. Contents

DMOG docs, Release 1.0

Parallel (mpi) job

#!/bin/bash -l

################# Part-1 Slurm directives ####################
Working dir
#SBATCH -D /users/username
Environment variables
#SBATCH --export=ALL
Output and Error Files
#SBATCH -o job-%j.output
#SBATCH -e job-%j.error
Job name
#SBATCH -J parallel-mpi-test
Run time: "hours:minutes:seconds", "days-hours"
#SBATCH --time=00:05:00
Memory limit (in megabytes). Total --mem or amount per cpu --mem-per-cpu
#SBATCH --mem-per-cpu=1024
Processing slots
#SBATCH --nodes=2
#SBATCH --ntasks=32
Specify partition
#SBATCH -p nodes

################# Part-2 Shell script ####################
#===============================
Activate Flight Environment
#-------------------------------
source "${flight_ROOT:-/opt/flight}"/etc/setup.sh

#==============================
Activate Package Ecosystem
#------------------------------
e.g.:
Load the OpenMPI module for access to `mpirun` command
flight env activate gridware
module load mpi/openmpi

if ! command -v mpirun &>/dev/null; then
echo "No mpirun command found, ensure that a version of MPI is installed and␣

→˓available in PATH" >&2
exit 1

fi

#===========================
Create results directory
#---------------------------
RESULTS_DIR="$(pwd)/${SLURM_JOB_NAME}-outputs/${SLURM_JOB_ID}"
echo "Your results will be stored in: $RESULTS_DIR"
mkdir -p "$RESULTS_DIR"

#===============================
Application launch commands

(continues on next page)

1.12. Job Submission 17

DMOG docs, Release 1.0

(continued from previous page)

#-------------------------------
Customize this section to suit your needs.

echo "Executing job commands, current working directory is $(pwd)"

REPLACE THE FOLLOWING WITH YOUR APPLICATION COMMANDS

echo "Hello, dmog" > $RESULTS_DIR/test.output
echo "This is an example job. It was allocated $SLURM_NTASKS slot(s) across $SLURM_JOB_
→˓NUM_NODES node(s). The master process ran on `hostname -s` (as `whoami`)." >>
→˓$RESULTS_DIR/test.output
mpirun -np $SLURM_NTASKS \

/bin/bash -c \
'echo "This process was executed on `hostname -s` with rank $OMPI_COMM_WORLD_RANK."'␣

→˓\
>> $RESULTS_DIR/test.output

echo "Output file has been generated, please check $RESULTS_DIR/test.output"

GPU job

#!/bin/bash -l

################# Part-1 Slurm directives ####################
Working dir
#SBATCH -D /users/username
Environment variables
#SBATCH --export=ALL
Output and Error Files
#SBATCH -o job-%j.output
#SBATCH -e job-%j.error
Job name
#SBATCH -J gpu-test
Run time: "hours:minutes:seconds", "days-hours"
#SBATCH --time=00:05:00
Memory limit (in megabytes). Total --mem or amount per cpu --mem-per-cpu
#SBATCH --mem-per-cpu=1024
GPU requirements
#SBATCH --gres gpu:1
Specify partition
#SBATCH -p gpu

################# Part-2 Shell script ####################
#===============================
Activate Flight Environment
#-------------------------------
source "${flight_ROOT:-/opt/flight}"/etc/setup.sh

#==============================
Activate Package Ecosystem

(continues on next page)

18 Chapter 1. Contents

DMOG docs, Release 1.0

(continued from previous page)

#------------------------------
e.g.:
Load the OpenMPI module for access to `mpirun` command
flight env activate gridware
module load mpi/openmpi

if ! command -v mpirun &>/dev/null; then
echo "No mpirun command found, ensure that a version of MPI is installed and␣

→˓available in PATH" >&2
exit 1

fi

#===========================
Create results directory
#---------------------------
RESULTS_DIR="$(pwd)/${SLURM_JOB_NAME}-outputs/${SLURM_JOB_ID}"
echo "Your results will be stored in: $RESULTS_DIR"
mkdir -p "$RESULTS_DIR"

#===============================
Application launch commands
#-------------------------------
Customize this section to suit your needs.

echo "Executing job commands, current working directory is $(pwd)"

REPLACE THE FOLLOWING WITH YOUR APPLICATION COMMANDS

echo "Hello, dmog" > $RESULTS_DIR/test.output
echo "This is an example job. It ran on `hostname -s` (as `whoami`)." >> $RESULTS_DIR/
→˓test.output
echo "I was allocated the following GPU devices: $CUDA_VISIBLE_DEVICES" >> $RESULTS_DIR/
→˓test.output
echo "Output file has been generated, please check $RESULTS_DIR/test.output"

1.13 Interactive Jobs

When debugging or developing code, interactive testing is often necessary. However, running interactive jobs directly
on the login node can cause overloading. It is recommended to run interactive jobs on the compute nodes instead. This
allows you to debug your code in the same environment that it will run in.

Resource allocation for interactive jobs is done through the command line.

To start an interactive session on CPU node:

srun --nodes=1 --ntasks-per-node=32 --mem=1024 --time=00:05:00 --partition=nodes --pty /
→˓usr/bin/bash

On a GPU enabled node, the command is very similar:

srun --nodes=1 --ntasks-per-node=32 --mem=1024 --time=00:05:00 --partition=gpu --
→˓gres=gpu:1 --pty /usr/bin/bash

1.13. Interactive Jobs 19

DMOG docs, Release 1.0

1.14 Making dynamic jobs scripts

Slurm provides several environment variables at runtime that can be used to create more dynamic submission scripts.
These variables can be used to specify the job name, set the number of nodes or tasks, and much more. Here are some
of the main environment variables that Slurm creates at runtime:

• SLURM_JOB_NAME: The name of the job

• SLURM_JOB_ID: The job ID number

• SLURM_JOB_CPUS_PER_NODE: The number of CPUs per node

• SLURM_JOB_NODELIST: The list of nodes allocated to the job

• SLURM_ARRAY_TASK_ID: The index of the job within an array job

In addition, Slurm also supports using format characters in submission scripts to define directives. These format
characters can be used to dynamically specify options such as the output file name or the number of nodes to use. Here
are some of the most common format characters:

• %j: Job ID

• %N: Node name

• %u: User name

• %a: Array job ID

• %A: Array job ID range

By using these environment variables and format characters, you can create more dynamic and flexible submission
scripts that can adapt to different job requirements. For example, you can use the %j format character to dynamically
specify the output file name based on the job ID, or use the SLURM_JOB_CPUS_PER_NODE variable to dynamically set
the number of CPUs to use.

1.15 Software Management

1.15.1 System software

HPC clusters typically have many users with varying software requirements and installing software for each user can
be time-consuming and may lead to conflicts between different versions of the same software.

Modules provide a way to manage software installations and make different versions of the same software available
to users on demand. With modules, users can load and unload different versions of software into their environment
without interfering with other users or the system’s default settings. This makes it easy for users to work with different
versions of the same software or to use different software packages for different projects or workflows.

Note: Please note that the easiest way to use modules is by activating the gridware user HPC environment (flight
env activate gridware).

Some of the most useful commands for interacting with modules include:

• module avail: This command lists all the available modules on the system, showing the name, version, and
any dependencies.

• module load: This command loads a specific module into the user’s environment, making its executable and
library files available for use.

20 Chapter 1. Contents

DMOG docs, Release 1.0

• module unload: This command unloads a previously loaded module, removing its executable and library files
from the user’s environment.

• module list: This command lists all the currently loaded modules, showing their name and version.

• module show: This command displays detailed information about a specific module, including its version, de-
pendencies, and any available module options.

1.15.2 Installing new software

In general, installing software on DMOG may require root access, as it often involves making changes to the system’s
configuration and installing packages in system directories that are only accessible to the root user.

However, there are alternative ways to install and manage software that do not require root access. For example, users
may be able to install software in their home directories or in a designated software directory that’s writable by users.

If you’re not sure whether you need root access to install software on your cluster, it’s a good idea to contact the cluster’s
system administrators for guidance.

1.15.3 Requesting new software

If you require software that is not currently available on the cluster and could benefit the broader user community, please
contact the cluster support team at ISHelp@hw.ac.uk. They can assist you in installing the software or evaluating its
suitability for the cluster. This will also help other users who may require the same software. Please note that the
support team will evaluate the software for security and compatibility issues before installing it on the cluster.

1.16 ABAQUS

To use Abaqus on DMOG, first you need to create an input file from the model you are looking to submit. You can do
this in Abaqus CAE on your PC by right-clicking on the job you want to run on DMOG and select Write Input. This
will create a file with the same name as the job’s name.

Next, connect to DMOG and run the following commands:

flight env activate gridware
module load apps/abaqus/2024

This will activate Abaqus and ensure it is ready to use for your jobs.

You should see something similar to this:

[gp27@login1 [dmog] ~]$ flight env activate gridware
<gridware{+}> [gp27@login1 [dmog] ~]$ module load apps/abaqus/2024
apps/abaqus/2024
|
OK
<gridware{+}> [gp27@login1 [dmog] ~]$

Next, copy your input file from earlier to DMOG. Then, to submit a job to DMOG create a script (.sh) file similar to
this (replacing the info in the []):

1.16. ABAQUS 21

mailto:ISHelp@hw.ac.uk

DMOG docs, Release 1.0

#!/bin/bash
#SBATCH --job-name=[name for your job]
#SBATCH --ntasks-per-node=[number of CPU threads]
#SBATCH --mem-per-cpu=[how much member (in MB) per CPU thread]
#SBATCH --time=[estimate of how long your job will take. eg. 05:00:00]
abaqus job=[nameForYourJob] input=[yourInputFile].inp cpus=[same value as ntasks-per-
→˓node above] interactive

The values next to –cpus-per-task, –mem-per-cpu, and –time can be adjusted as needed to suit your job. Please note that
higher values next to –cpus-per-task and –mem may mean that your job has to wait for a while before these resources
are available.

More info on the SBATCH values can be found here: Job Submission

Once you have created the script file you can submit the job by running this command:

sbatch yourscript.sh

Note that this will need to be run from within the folder where the .inp file is, or specify the full path to it in your script.

Once your job is submitted, you can monitor it either via the sacct command, or by using:

tail -f [yourJobName].sta

or

tail -f [yourJobName].msg

1.17 AMBER

AMBER (Assisted Model Building with Energy Refinement) is a widely used software package for molecular dynam-
ics simulations of biomolecules. It allows users to simulate the motion and behaviour of molecules in a variety of
conditions, such as in different solvents or under different temperatures.

On DMOG, users can access AMBER by activating the gridware flight environment using the command flight env
activate gridware. Once activated, the AMBER package module can be loaded using the command module load
apps/amber/22/gcc-12.2.0. This will make the AMBER tools and executables available for use on the cluster.

AMBER includes several executables that are commonly used for molecular dynamics simulations. Some of the most
frequently used executables include:

• sander: The main molecular dynamics engine used in AMBER, which can perform energy minimization, equi-
librium simulations, and production runs.

• pmemd: An optimized version of sander that can run on GPUs, which can significantly accelerate molecular
dynamics simulations.

• cpptraj: A utility that can perform a variety of tasks related to analyzing and processing the output from
AMBER simulations, such as calculating RMSDs, extracting specific frames from a trajectory, and generating
input files for other programs.

22 Chapter 1. Contents

https://dmogdocs.readthedocs.io/en/latest/user/jobsubmission.html

DMOG docs, Release 1.0

1.17.1 Running AMBER jobs

An example job script for AMBER would be:

#!/bin/bash
#SBATCH --job-name=amber
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=32
#SBATCH --cpus-per-task=1
#SBATCH --time=1:00:00
#SBATCH --mem=128G
#SBATCH --partition=nodes

Load required modules
flight env activate gridware
module load apps/amber/22/gcc-12.2.0

Change to the directory where input files are located
cd /path/to/input/files

Run the Amber simulation
srun --mpi=pmi2 $AMBERHOME/bin/pmemd.MPI -O -i input.in -o output.out -p prmtop -c␣
→˓inpcrd -r output.rst

In this script, the job is named “amber” and will run on a single node with 32 tasks (processes) per node, using 1 CPU
per task. The requested memory is 128GB and the job has a maximum runtime of 1 hour. The “nodes” partition is
specified.

The required modules for Amber and Gridware are loaded, and the script changes to the directory where the input
files for the simulation are located. Finally, the Amber simulation is run using the srun command with the appropriate
arguments.

1.18 Julia

Julia is a high-level, high-performance programming language designed for numerical and scientific computing. It
combines the ease of use and expressive power of high-level languages like Python with the performance of low-level
languages like C.

To utilize Julia on the DMOG HPC cluster, follow the instructions below:

flight env activate gridware
module load apps/julia

Note that Julia runs alongside Python. Therefore, any additional dependencies required for your Julia programs
need to be installed in your user workspace using Conda or Anaconda (see Python for further details). Make sure you
have the necessary packages installed to fulfill your requirements.

By default, Julia packages are stored in the .julia directory located within your home directory. If you want to use a
different path to store local packages, you can modify the JULIA_DEPOT_PATH environment variable:

export JULIA_DEPOT_PATH=/path/to/myjulia

This would only work in the current active session. To make it permanent, add that line in your .bashrc file.

1.18. Julia 23

DMOG docs, Release 1.0

1.19 MATLAB

MATLAB is a high-level programming language and interactive environment widely used for numerical computation,
visualization, and programming. It provides an extensive collection of mathematical functions, algorithms, and tool-
boxes for various areas of engineering, science, and finance. MATLAB is designed to make numerical analysis and
data processing easier, faster, and more accurate. It is widely used in academia, research, and industry for a range of
applications, from data analysis and visualization to control systems design and image processing.

MATLAB is available for use under the university’s licenses for teaching and academic research purposes. If you need
to use MATLAB for other purposes, please contact ISHelp@hw.ac.uk for further guidance.

1.19.1 Running MATLAB jobs

To use MATLAB on the cluster, you need to load the MATLAB module first. You can do this by running the following
commands in your terminal:

flight env activate gridware
module load apps/matlab/r2022b

To run MATLAB jobs on the cluster, you need to create a job script that contains the MATLAB commands that you
want to run. Here is an example job script (my_matlab_job.sh):

#!/bin/bash
#SBATCH --job-name=my-matlab-job
#SBATCH --output=my-matlab-job.out
#SBATCH --error=my-matlab-job.err
#SBATCH --nodes=1
#SBATCH --cpus-per-task=4
#SBATCH --time=00:30:00

flight env activate gridware
module load apps/matlab/r2022b

matlab -nodesktop -nosplash -r "my_matlab_script"

This job script requests one node with four CPUs and a maximum run time of 30 minutes. It loads the MAT-
LAB module and runs a MATLAB script called my_matlab_script. The output and error messages are written
to my-matlab-job.out and my-matlab-job.err respectively.

Here is an example MATLAB script that calculates the sum of two numbers (my_matlab_script.m):

a = 5;
b = 10;
c = a + b;
disp(['The sum of a and b is ', num2str(c)]);

Save this script as my_matlab_script.m and put it in the same directory as your job script. To submit the job script
to the cluster, run the following command in the terminal:

sbatch my_matlab_job.sh

This will submit the job script to the cluster, and you can monitor the job status using the squeue command.

Here is an example job script that requests a GPU node and uses the “gpu” queue (my_matlab_gpu_job.sh):

24 Chapter 1. Contents

mailto:ISHelp@hw.ac.uk

DMOG docs, Release 1.0

#!/bin/bash
#SBATCH --job-name=my-matlab-gpu-job
#SBATCH --output=my-matlab-gpu-job.out
#SBATCH --error=my-matlab-gpu-job.err
#SBATCH --nodes=1
#SBATCH --cpus-per-task=4
#SBATCH --gres=1
#SBATCH --partition=gpu
#SBATCH --time=00:30:00

flight env activate gridware
module load apps/matlab/r2022b
module load apps/nvidia-cuda/11.2.2

matlab -nodesktop -nosplash -r "my_matlab_gpu_script"

This job script is like the previous one, but it requests a GPU node with one GPU and uses the “gpu” queue. It also
loads the CUDA toolkit module to enable GPU acceleration in MATLAB.

Here is an example MATLAB script that uses the GPU to perform matrix multiplication (my_matlab_gpu_script.m):

a = gpuArray.rand(1000);
b = gpuArray.rand(1000);
c = a * b;
d = gather(c);
disp(d);

Save this script as my_matlab_gpu_script.m and put it in the same directory as your job script.

To submit the job script to the cluster, run the following command in the terminal:

sbatch my_matlab_gpu_job.sh

This will submit the job script to the “gpu” queue, and the cluster will allocate a GPU node for your job to run.

1.20 OpenFoam

OpenFOAM is a popular open-source computational fluid dynamics (CFD) software package used for simulating com-
plex fluid flow problems. It provides a comprehensive range of tools for solving problems involving flow of fluids,
including heat and mass transfer.

1.20.1 Running OpenFoam jobs

To run OpenFOAM on the cluster, you first need to load the appropriate module. On the DMOG cluster, the OpenFOAM
module can be loaded using the following commands:

flight env activate gridware
module load pps/openfoamplus/22.06

Once you have loaded the module, you can run OpenFOAM applications using the standard OpenFOAM command
line interface. Here are a couple of example jobscripts to get you started:

Example 1: Running an OpenFOAM job on the “nodes” queue

1.20. OpenFoam 25

DMOG docs, Release 1.0

#!/bin/bash
#SBATCH --job-name=myOpenFOAMJob
#SBATCH --nodes=2
#SBATCH --ntasks-per-node=16
#SBATCH --time=1:00:00
#SBATCH --partition=nodes

flight env activate gridware
module load apps/openfoamplus/22.06/gcc-8.4.0

mpirun -np $SLURM_NTASKS --hostfile $SLURM_JOB_NODELIST interFoam -parallel

Example 2: Running an OpenFOAM job on the “gpu” queue (using GPUs)

#!/bin/bash
#SBATCH --job-name=myOpenFOAMJob
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=8
#SBATCH --gres=gpu:1
#SBATCH --time=1:00:00
#SBATCH --partition=gpu

flight env activate gridware
module load apps/openfoamplus/22.06/gcc-8.4.0

mpirun -np $SLURM_NTASKS --hostfile $SLURM_JOB_NODELIST interFoam -parallel

In the above examples, we use the mpirun command to run the OpenFOAM application in parallel. The -np option
specifies the number of processes to be run, and --hostfile specifies the file that contains the list of hosts to be used
for the job.

1.21 OpenMolcas

OpenMolcas is a state-of-the-art quantum chemistry software package developed by scientists for scientists. It offers
a comprehensive suite of programs for applying various electronic structure methods to chemical systems. One of
its standout features is the multiconfigurational approach, incorporating advanced methods like CASSCF (Complete
Active Space Self-Consistent Field) and CASPT2 (Complete Active Space Perturbation Theory). Unlike being a fork or
reimplementation, OpenMolcas is a substantial part of the Molcas codebase released as free and open-source software
(FOSS) under the Lesser General Public License (LGPL). However, some portions of Molcas remain under a different
license due to the decisions of their original authors or accessibility issues.

We have installed two versions of OpenMolcas on our HPC cluster: version 23.10 and version 24.02. Users can
access these versions by enabling the gridware flight environment and loading the respective modules. Each version
of OpenMolcas includes both serial and parallel executable files, facilitating efficient calculations on both single-core
and multi-core processor systems.

For further reading and to understand the capabilities and advancements of OpenMolcas, we recommend the following
references:

• “OpenMolcas: From Source Code to Insight.” J. Chem. Theory Comput. 15 (2019) 5925-5964.
doi:10.1021/acs.jctc.9b00532

• “Modern quantum chemistry with [Open]Molcas.” J. Chem. Phys. 152 (2020) 214117. doi:10.1063/5.0004835

26 Chapter 1. Contents

DMOG docs, Release 1.0

• “The OpenMolcas Web: A Community-Driven Approach to Advancing Computational Chemistry.” J. Chem.
Theory Comput. 19 (2023) 6933-6991. doi:10.1021/acs.jctc.3c00182

Note: We are aware of an issue with the parallel build of OpenMolcas version 23.10, whereby some jobs may hang.
If you encounter this issue, we recommend using OpenMolcas version 24.02 as an alternative.

1.21.1 Running OpenMolcas jobs

An example job script for OpenMolcas would be:

#!/bin/bash

#SBATCH --job-name=molcas-test
#SBATCH --nodes=1
#SBATCH --tasks-per-node=4
#SBATCH --time=100:00:00
#SBATCH --partition=nodes
#SBATCH --mem=50000MB
#SBATCH --output=molcas.%j.o
#SBATCH --error=molcas.%j.e

flight env activate gridware
module load apps/openmolcas_mpi/24.02
export MOLCAS_NPROCS=$SLURM_TASKS_PER_NODE

pymolcas molcas.input > MOLCAS.out

Where molcas.input is:

&GATEWAY
COORD
5

N 0.000000000 15.566997820 0.000000000
O 0.000000000 14.503597820 0.000000000
C 0.000000000 0.000000000 0.000000000
O 0.000000000 -1.160000000 0.000000000
O 0.000000000 1.160000000 0.000000000
GROUP = nosym
TITLE = Molcas-Test
BASIS = STO-3G

&SEWARD

&RASSCF
SPIN= 2
RAS2= 10
NACTEL = 13
INACTIVE = 12
CIROOT = 20 20 1

To submit a job using the provided Slurm script, you can use the following command:

1.21. OpenMolcas 27

DMOG docs, Release 1.0

sbatch submit_molcas.sh

1.22 ORCA

ORCA is a general-purpose quantum chemistry program package that features virtually all modern electronic struc-
ture methods (density functional theory, many-body perturbation and coupled cluster theories, and multireference and
semiempirical methods). It is designed with the aim of generality, extendibility, efficiency, and user friendliness. Its
main field of application is larger molecules, transition metal complexes, and their spectroscopic properties

Please note that ORCA does not currently support GPU acceleration. Therefore, when utilizing ORCA on our HPC
cluster, it is essential to optimize job scripts and resource allocation for CPU-based calculations to achieve optimal
performance.

1.22.1 Running ORCA jobs

To run ORCA on the HPC cluster, you need to load the appropriate software module:

flight env activate gridware
module load apps/ORCA/5.0.4
module load mpi/openmpi/4.0.7

Below is an example of a job script and input file for running a basic ORCA calculation:

!/bin/bash

#SBATCH --job-name=orca-test
#SBATCH --nodes=1
#SBATCH --tasks-per-node=4
#SBATCH --time=1:00:00
#SBATCH --partition=nodes

export UCS_LOG_LEVEL=error

flight env activate gridware
module load apps/orca/5.0.4
module load mpi/openmpi/4.0.7

input=input.inp

$ORCADIR/orca ${input} > ${input}.out 2>&1

In the example, the job is submitted to the CPU queue (--partition=nodes). It reserves 4 cores for 1 hour.

The input file (input.inp):

! DLPNO-CCSD(T) cc-pVTZ cc-pVTZ/C cc-pVTZ/jk rijk verytightscf TightPNO LED
Specify number of processors
%pal
nprocs 4
end
Specify memory

(continues on next page)

28 Chapter 1. Contents

DMOG docs, Release 1.0

(continued from previous page)

%maxcore 12000
%mdci
printlevel 3
end
* xyz 0 1
O 1.327706 0.106852 0.000000
H 1.612645 -0.413154 0.767232
H 1.612645 -0.413154 -0.767232
O -1.550676 -0.120030 -0.000000
H -0.587091 0.053367 -0.000000
H -1.954502 0.759303 -0.000000
*
%geom
Fragments
2 {3:5} end
end
end

1.23 Python

In shared facilities, Python is commonly managed using tools like Conda and Anaconda to ensure efficient and reliable
environment management. On DMOG, the flight environment Conda and the Anaconda modules, offer a comprehen-
sive solution for creating isolated and reproducible Python environments. These environments allow multiple users
to work on the same system without conflicts, as each user can have their own customized Python environment with
specific package versions and dependencies.

This approach ensures that Python-based projects on DMOG can be executed reliably and with minimal compatibility
issues, enabling collaborative research and streamlined workflows.

1.23.1 Conda

Conda is an open-source package management system and environment management system. It allows you to create
and manage isolated environments for different projects, ensuring that each project has its own set of dependencies and
packages. Conda simplifies package installation, updating, and removal, making it easier to maintain a consistent and
reproducible development environment.

To use conda you need to activate the relevant flight environment:

flight env activate conda@<name>

The above command will fail if you haven’t created Conda environment yet. To do so, just use the flight env create
command as follows:

flight env create conda[@name]

Conda itself supports multiple user environments. The default environment is called base. You can use it to build your
own custom workspace. The conda command enables you to list the currently installed packages, and also search and
install new ones.

1.23. Python 29

DMOG docs, Release 1.0

conda list
conda search <packagename>
conda install <packagename>

Alternatively, you can create new environment to suit your needs. For example to create a new environment called
“myenv” with a specific version of Python:

conda create --name myenv python=3.9

To navigate across the different Conda environment you can use:

conda info --env
conda activate <name>
conda deactivate

If you prefer to search and install packages using pip, you can also use

pip list
pip search <packagename>
pip install <packagename>

1.23.2 Anaconda

Anaconda is a widely-used distribution of Python that comes bundled with a comprehensive collection of packages
and tools for scientific computing and data analysis. On DMOG, Anaconda is available through the flight env
gridware modules, which offer two separate modules—one for Python 2 and the other for Python 3. These mod-
ules provide users with a convenient way to access and utilize Anaconda for their research and data analysis tasks.

To use anaconda:

flight env activate gridware
module load app/<anaconda/anaconda3>

Once the module is loaded, the same commands as for Conda apply to Anaconda.

The default environment is called base. You can use it to build your own custom workspace. The conda command
enables you to list the currently installed packages, and also search and install new ones.

conda list
conda search <packagename>
conda install <packagename>

Alternatively, you can create new environment to suit your needs. For example to create a new environment called
“myenv” with a specific version of Python:

conda create --name myenv python=3.9

To navigate across the different Conda environment you can use:

conda info --env
conda activate <name>
conda deactivate

If you prefer to search and install packages using pip, you can also use

30 Chapter 1. Contents

DMOG docs, Release 1.0

pip list
pip search <packagename>
pip install <packagename>

1.24 R

R is a programming language and software environment used for statistical computing and graphics. It provides a
wide variety of statistical and graphical techniques, and is highly extensible. R is popular among researchers and data
analysts in many fields, and is widely used in the academic and business communities.

1.24.1 Running R jobs

To run R on the HPC cluster, you need to load the appropriate software module:

flight env activate gridware
module load apps/R/4.2.3

To run R on the CPU queue, you need to create a job script that specifies the resources required for your job. Here is
an example job script:

#!/bin/bash
#SBATCH --job-name=my_R_job
#SBATCH --output=output.log
#SBATCH --error=error.log
#SBATCH --partition=nodes
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=1
#SBATCH --cpus-per-task=8
#SBATCH --time=01:00:00

Load the R module
flight env activate gridware
module load R/4.2.3

Run the R script
Rscript my_R_script.R

In this example, the job is submitted to the nodes partition, which is the default partition for CPU jobs. The job
requests one node with 8 CPU cores (--nodes=1 and --cpus-per-task=8). The job also requests a runtime of 1
hour (--time=01:00:00). The my_R_script.R file is the R script that you want to run.

To run R on the GPU queue, you need to use a different partition and request the appropriate resources.

#!/bin/bash
#SBATCH --job-name=my_R_job
#SBATCH --output=output.log
#SBATCH --error=error.log
#SBATCH --partition=gpu
#SBATCH --gres=gpu:1
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=1

(continues on next page)

1.24. R 31

DMOG docs, Release 1.0

(continued from previous page)

#SBATCH --cpus-per-task=4
#SBATCH --time=01:00:00

Load the R module
flight env activate gridware
module load R/4.2.3

Run the R script
Rscript my_R_script.R

In this example, the job is submitted to the gpu partition, which is the partition for GPU jobs. The job requests one node
with 1 GPU (--gres=gpu:1), 4 CPU cores (--cpus-per-task=4), and a runtime of 1 hour (--time=01:00:00).
The my_R_script.R file is the R script that you want to run.

Here are a couple of simple R scripts that you can use to test your setup:

Example 1: Hello World

Print "Hello, world!" to the console
cat("Hello, world!\n")

Example 2: Basic Data Analysis

Load the built-in iris dataset
data(iris)

Print the dimensions of the dataset
cat("Number of rows: ", nrow(iris), "\n")
cat("Number of columns: ", ncol(iris), "\n")

Compute the mean of the Sepal.Length variable
mean_sepal_length <- mean(iris$Sepal.Length)
cat("Mean Sepal.Length: ", mean_sepal_length, "\n

1.25 VSCode

VSCode via Slurm

32 Chapter 1. Contents

https://dmogdocs.readthedocs.io/en/latest/user/connecting/connecting.html#vscode-via-slurm

	Contents
	Introduction
	Acknowledging DMOG

	General Use Policy
	Access and Priorization
	Job Quotas
	Storage Quotas
	Conda

	Hardware
	CPU compute nodes
	Large Memory Nodes
	Large Core Count Nodes

	GPU compute nodes
	Storage
	Networking

	Connecting to DMOG
	VSCode via Slurm
	Configure MobaXTerm for DMOG

	Data Management
	File Transfer
	The scp command
	The rsync command

	A word on OpenFlightHPC
	HPC User environments (flight env)
	Remote desktop (flight desktop)
	Disabling OpenFlightHPC

	Job Management
	Basic Slurm commands
	Job queue states and reasons

	Job Submission
	Batch Jobs
	Serial job
	Shared memory job
	Parallel (mpi) job
	GPU job

	Interactive Jobs
	Making dynamic jobs scripts
	Software Management
	System software
	Installing new software
	Requesting new software

	ABAQUS
	AMBER
	Running AMBER jobs

	Julia
	MATLAB
	Running MATLAB jobs

	OpenFoam
	Running OpenFoam jobs

	OpenMolcas
	Running OpenMolcas jobs

	ORCA
	Running ORCA jobs

	Python
	Conda
	Anaconda

	R
	Running R jobs

	VSCode

